Farbe und Konstitution bei anorganischen Feststoffen, 12. Mitt.¹:

Die Lichtabsorption des zweiwertigen Kobalts in oxidischen Koordinationsgittern vom Ilmenittyp

Von

0. Schmitz-DuMont und Dieter Grimm

Aus dem Anorganisch-Chemischen Institut der Universität Bonn

Mit 4 Abbildungen

(Eingegangen am 8. Februar 1965)

Die Systeme $\operatorname{Co}_x \operatorname{Mg}_{1-x} \operatorname{TiO}_3(I)$ und $\operatorname{Co}_x \operatorname{Cd}_{1-x} \operatorname{TiO}_3(II)$ wurden röntgenographisch und spektralphotometrisch untersucht. I stellt eine lückenlose Mischkristallreihe dar. Mit wachsendem x nehmen bei I die Gitterkonstanten a_0 und c_0 geringfügig zu und die drei Hauptabsorptionsbanden verschieben sich ein wenig in Richtung IR. In II liegt keine lückenlose Mischkristallreihe vor. Sowohl röntgenographisch als auch spektralphotometrisch wurde für die an CoTiO₃ gesättigte CdTiO₃-Phase die Zusammensetzung $\operatorname{Co}_{0,3} \operatorname{Cd}_{0,7}$ TiO₃ (II a) und für die an CdTiO₃ gesättigte CoTiO₃-Phase die Zusammensetzung Co_{0,8}Cd_{0,2}TiO₃ (II b) gefunden.

Beim Übergang $I \rightarrow II \ (x = 0,1)$ wird eine beträchtliche IR-Verschiebung beobachtet. Die IR-Verschiebung ist die Folge der Gitteraufweitung bei der Substitution von Mg^{2+} durch Cd^{2+} . Hierbei nimmt der *Racah*-Parameter geringfügig zu infolge Verminderung der covalenten Anteile der Bindung Co-O.

The systems $\operatorname{Co}_{x}\operatorname{Mg}_{1-x}\operatorname{TiO}_{3}(I)$ and $\operatorname{Co}_{x}\operatorname{Cd}_{1-x}\operatorname{TiO}_{3}(II)$ had been investigated spectrophotometrically and by X-ray diffraction. I represents mixed crystals without any miscibility gap. An increase of x causes a small enhancement of the lattice units a_{0} and c_{0} of I and the three main absorption bands will be shifted slightly towards IR. II are mixed crystals with a broad miscibility gap. Spectrophotometrically and by X-ray diffraction it could be found that the CdTiO₃-phase saturated with CoTiO₃ and the CoTiO₃-phase saturated with CdTiO₃ have the compositions $\operatorname{Co}_{0,3}\operatorname{Cd}_{0,7}\operatorname{TiO}_{3}(II a)$ and $\operatorname{Co}_{0,8}\operatorname{Cd}_{0,2}\operatorname{TiO}_{3}(II b)$, respectively. The

¹ 11. Mitt.: D. Reinen, Mh. Chem. 96, 730 (1965).

Schmitz-DuMont u.a.: Farbe und Konstitution bei anorg. Feststoffen 923

transition $I \rightarrow II$ (x = 0,1) produces a considerable shift of the main absorption bands towards IR as a consequence of the expansion of the lattice caused by the substitution of Cd^{2+} for Mg^{2+} . This shift is accompanied by a small increase of the *Racah*-Parameter owing to a decrease of covalency of the bonding Co-O.

1. Einleitung

In einer kürzlich erschienenen Mitteilung² berichteten wir über die Lichtabsorption des Ni²⁺ in dem System Ni_xCd_{1-x}TiO₃. Wir konnten zeigen, daß in der metastabilen, im *Ilmenit*-Gitter kristallisierenden Modifikation des CdTiO₃ maximal 5 Atom% Cd durch Ni ausgetauscht werden können (x = 0.05), und daß die Hauptabsorptionsbanden des eingebauten Ni²⁺ im Vergleich zu denen des NiTiO₃ in Richtung IR verschoben sind. Dies ist die Folge der starken Gitterweitung, die sich beim Übergang NiTiO₃ \rightarrow Ni_xCd_{1-x}TiO₃ (x = 0.05) vollzieht. Damit wurde unsere bisherige Erfahrung erneut bestätigt, daß die Aufweitung eines einfachen Koordinationsgitters mit koordinationschemisch gleichartigen Positionen der Kationen durch isomorphen Einbau größerer Kationen immer eine IR-Verschiebung der Hauptabsorptionsbanden bewirkt. Im folgenden berichten wir über die Lichtabsorption der Systeme Co_xMg_{1-x}TiO₃ und Co_xCd_{1-x}TiO₃

2. Versuchsergebnisse

a) Röntgenographische Untersuchung der Systeme $Co_xMg_{1-x}TiO_3$ und $Co_xCd_{1-x}TiO_3$.

CoTiO₃, MgTiO₃ und CdTiO₃ (Ilmenitmodifikation) gehören derselben Raumgruppe C_{Si}^2 an. Infolge der sehr ähnlichen Ionenradien von Co²⁺ und Mg²⁺ (siehe Tab. 1) waren im System Co_xMg_{1-x}TiO₃ eine *lückenlose*

Tabelle 1. Ionenradien nach V. M. Goldschmidt

	Mg ²⁺	Ni ²⁺	Co^{2+}	Cd ²⁺
Å	0,78	0,78	0,82	1,03

Mischkristallreihe und eine sehr geringe Aufweitung des Gitters mit zunehmendem x zu erwarten. Dies wurde durch die Versuchsergebnisse bestätigt (Tab. 2). Die Ionenradien von Co^{2+} und Cd^{2+} (Tab. 1) differieren hingegen so beträchtlich, daß im System $\operatorname{Co}_x \operatorname{Cd}_{1-x} \operatorname{TiO}_3$ eine lückenlose Mischkristallreihe *nicht* erwartet werden konnte. Die röntgenographische Untersuchung ergab folgendes: Ausgehend von CoTiO_3 (x = 1) steigen die Gitterkonstanten a_0 und c_0 mit abnehmendem x linear an (Tab. 2, Abb. 1 a und b).

² O. Schmitz-DuMont und Horst Kasper, Mh. Chem. 95, 1433 (1964).

anh-t-re	Gitterkonstanten, Å		
Substallz	a ₀	C ₀	
MgTiO ₃	5,055	13,90	
$Co_{0,1}Mg_{0,9}TiO_3$	5,055	13,90	
CoTiO3	5,064	13,92	
$Co_{0.9}Cd_{0.1}TiO_3$	5,073	13,98	
$Co_{0.8}Cd_{0.2}TiO_3$	5,076	14,02	
$Co_{0,2}Cd_{0,8}TiO_3$	5,216	14,60	
$Co_{0,1}Cd_{0,9}TiO_3$	5,228	14,73	
$CdTiO_3$	5,239	14,86	

Tabelle 2

Während die Röntgenreflexe der Pulveraufnahmen im Bereich $1 \ge x \ge 0.8$ scharf sind, verbreitern sie sich bei kleineren Werten von xund zeigen z. T. eine deutliche Aufspaltung, so daß sie keine exakten Vermessungen mehr zulassen. Dies ist erst wieder im Bereich $0, 2 \ge x \ge 0$

Abb. 1 a und b. Verlauf der Gitterkonstanten a_0 und c_0 im System $\text{Co}_x \text{Cd}_{1-x} \text{TiO}_3$

möglich. Hier steigen a_0 und c_0 wieder mit abnehmendem x linear an. Es schneiden sich nur die Verlängerungen der beiden Geraden von c_0 , nicht aber diejenigen von a_0 . Es besteht kein Zweifel, daß in dem System $\operatorname{Co}_x \operatorname{Cd}_{1-x} \operatorname{TiO}_3$ eine breite Mischungslücke existiert, die etwa von $0,3 \leq x \leq 0,7$ reicht.

b) Spektralphotometrische Untersuchung

Die Lichtabsorption der in Form feinkristalliner Pulver (Korngröße $2-5 \mu$) vorliegenden Substanzen wurde in Remission gemessen. Um einwandfreie Resultate zu erzielen, war es notwendig, die Remission auf MgTiO₃ bzw.

 $CdTiO_3$ als "Weißstandard" zu beziehen. Dies geschah in der Weise, daß die Remission R (gemessen gegen MgO) der Co²⁺-haltigen Substanzen durch die Remission R_w des MgTiO₃ bzw. CdTiO₃ (gemessen gegen MgO) dividiert und in die Kubelka—Schuster—Muncksche Gleichung eingesetzt wurde:

$$\lg rac{k}{s} = \lg rac{\left(1 - rac{R}{R_{
m w}}
ight)^2}{2rac{R}{R_{
m w}}} \qquad k = {
m Absorptionskoeffizient} \ s = {
m Streukoeffizient}$$

In den Diagrammen wurde lg $\frac{k}{s}$ (Ordinate) gegen die Wellenzahl (Abszisse) aufgetragen.

Für die Messungen wurde das Zeiss'sche Spektralphotometer PMQII mit 100-Punkt-Automatik und *Ulbricht*scher Kugel verwendet.

~	Lage der Absorptionsbanden cm ⁻¹				
Substanz	I	II	III a	III b	IV
Co _{0,10} Mg _{0,90} TiO ₃	6700	13 300	17 000	18 750	28 500
CoTiO_3*	$\begin{array}{c} 6400 \\ 6400 \end{array}$	$\begin{array}{c} 13 \ 200 \\ 13 \ 150 \end{array}$	$\begin{array}{c} 16\ 550\\ 16\ 750\end{array}$	$\frac{18}{18} \frac{600}{600}$	$23 \ 200 \\ 22 \ 800$
$\mathrm{Co}_{0,95}\mathrm{Cd}_{0,05}\mathrm{TiO}_3$	6400	12 950	16 650	18 600	$23\ 100$
Co _{0.90} Cd _{0.10} TiO ₃	6350	12 850	16650	18 600	$23 \ 400$
Co _{0.85} Cd _{0.15} TiO ₃	6300	$12\ 750$	16600	18600	$23 \ 700$
Co _{0.80} Cd _{0.20} TiO ₃	6300	12 700	16600	18600	$24\ 000$
Co _{0.70} Cd _{0.30} TiO ₃	6300	12 600	16600	18 600	23 700
Co _{0.50} Cd _{0.50} TiO ₃	6300	12500	$16\ 600$	18 600	23 800
Co _{0.30} Cd _{0.70} TiO ₃	6100	12 100	16500	18550	24 200
Co _{0.20} Cd _{0.80} TiO ₃	5750	$11 \ 450$	$16 \ 450$	18 550	$26\ 000$
Co _{0.15} Cd _{0.85} TiO ₃	5550	$11 \ 000$	$16\ 300$	18 600	
Co _{0.10} Cd _{0.90} TiO ₃	5400	10 700	$16\ 300$	18 600	$28\ 700$
Co _{0.06} Cd _{0.94} TiO ₃	5350	10 550	$16\ 100$	18 600	
Co _{0,03} Cd _{0,97} TiO ₃	5300	$10 \ 400$	$16\ 050$	18 600	
$\mathrm{Co}_{0,01}\mathrm{Cd}_{0,99}\mathrm{TiO}_3$	5200	$10\ 350$	$15 \ 950$	18 600	

Tabelle 3

* Obere Zeile bezogen auf $MgTiO_3$, untere auf $CdTiO_3$ als Weiß-Standard.

Die Farbkurven von $\text{Co}_{0,1}\text{Mg}_{0,9}\text{TiO}_3$ und $\text{Co}_{0,1}\text{Cd}_{0,9}\text{TiO}_3$ (Abb. 2, Tab. 3) zeigen die für *oktaedrisch* koordiniertes Co^{2+} charakteristischen 3 Hauptabsorptionsbanden, welche den folgenden Übergängen entsprechen:

$$\begin{array}{ccc} I & {}^{4}T_{1g} \ d \ \epsilon^{5} \ \gamma^{2} \ ({}^{4}F) \longrightarrow {}^{4}T_{2g} \ d \ \epsilon^{4} \ \gamma^{3} \ ({}^{4}F) \\ II & ,, & \longrightarrow {}^{4}A_{2g} \ d \ \epsilon^{3} \ \gamma^{4} \ ({}^{4}F) \\ III & ,, & \longrightarrow {}^{4}T_{1g} \ d \ \epsilon^{4} \ \gamma^{3} \ ({}^{4}P) \end{array}$$

Auffallend ist, daß die Bande II in beiden Farbkurven als freistehendes, relativ scharfes Maximum ausgebildet ist, während sie sich im Spektrum des Mischkristalles $\text{Co}_x \text{Mg}_{1-x}$ O mit regulär oktaedrisch koordiniertem Co^{2+} nur als Schulter zu erkennen gibt¹. Dies ist eine Folge des im Vergleich zum Mischkristall $\text{Co}_x \text{Mg}_{1-x}$ O kleineren Feldstärkenparameters $\Delta \equiv 10 Dq$, wodurch die stark Δ -abhängige Bande II stärker nach IR verschoben erscheint, als die weniger Δ -abhängige Bande III (vgl. Term-

Abb. 2. Farbkurven von Co_{0,1}Cd_{0,9}TiO₃ und Co_{0,1}Mg_{0,9}TiO₃

schema in¹ und somit von dem nach UV aufsteigenden Ast der Bande III nicht verdeckt wird. Auf dem nach UV abfallenden Ast der Bande III befindet sich ein schwaches, aber scharf ausgeprägtes Maximum, das in keinem Fall eine merkbare Abhängigkeit von der Co-Konzentration zeigt. Es kann nur dem kaum Δ -abhängigen Übergang ${}^{4}T_{1g} ({}^{4}F) \rightarrow {}^{2}T_{1g} ({}^{2}G)$ zugeordnet werden¹. Eine vierte Bande (IV) befindet sich im nahen UV. Hierbei kann es sich um eine Elektronenübergangsbande (charge transfer) handeln.

c) Abhängigkeit der Bandenlagen von der Co-Konzentration

Alle Hauptbanden I, II und III verschieben sich mit zunehmenden Gitterkonstanten (Gitterweitung) nach IR, die Elektronenübergangs-

bande IV jedoch nach UV. Davon unberührt bleibt das in dem nach UV abfallenden Ast der Bande III vorhandene Nebenmaximum bei 18700 cm⁻¹ infolge der nicht nennenswerten Δ -Abhängigkeit des zugeordneten Elek-

Abb. 3 a, b, c und d. Die Änderung der Lagen der Hauptabsorptionsbanden I, II, III und IV in Abhängigkeit von der Co²⁺-Konzentration im System Co_xCd_{1-x}TiO₃

tronenüberganges (s. oben). Im System $Co_xMg_{1-x}TiO_3$ steigen die Gitterkonstanten nur wenig an. Dementsprechend ist auch die IR-Verschiebung der Hauptmaxima I, II und III nur gering. Zudem verläuft sie kontinuierlich. Im Gegensatz hierzu verschieben sich die Maxima I, II und III im System $\operatorname{Co}_x \operatorname{Cd}_{1-x} \operatorname{TiO}_3$ diskontinuierlich mit abnehmendem x in Richtung IR (Abb. 3 a, b, c und 4). Nach einer relativ geringen, annähernd linearen IR-Verschiebung im Bereich $1 \ge x \ge 0.8$ ändert sich die Lage

der Maxima kaum. Aber im Bereich $0,3 \ge x > 0$ ist die IR-Verschiebung wieder beträchtlich.

Auch die Elektronenübergangsbande IV, die sich mit abnehmendem x in gegenläufigem Sinne verschiebt (UV-Verschiebung), ändert ihre Lage nicht kontinuierlich (Abb. 3 d). Sie bleibt im Bereich $0,3 \le x \le 0,8$ ebenfalls annähernd konstant.

Aus diesen Ergebnissen kann man schließen, daß im System $\operatorname{Co}_x \operatorname{Cd}_{1-x}$ TiO₃ eine Mischungslücke im Gebiet $0,3 \leq x \leq 0,8$ vorhanden ist. Somit stehen die spektralphotometrisch erhaltenen mit den röntgenographischen Ergebnissen im Einklang.

d) Vergleich der Lichtabsorption von Co²⁺ nach Einbau in CdTiO₃ und MgTiO₃

Wir vergleichen die Spektren von $Co_{0,1}Mg_{0,9}TiO_3$ (A) und $Co_{0,1}Cd_{0,9}TiO_3$ (B).

Beim Übergang $A \rightarrow B$ erfolgt eine Verschiebung der Banden I, II und III in Richtung IR (Abb. 2), die bei Bande II am stärksten ist, da sie im größeren Maße vom Feldparameter Δ abhängt als I und III (siehe Tab. 3).

Diese IR-Verschiebung entspricht ganz den Erwartungen. Da CdTiO₃ gegenüber MgTiO₃ größere Gitterkonstanten besitzt, ist es plausibel, daß die Feldstärke in B am Orte des eingebauten Co^{2+} kleiner als in A ist.

Auf Grund des in¹ angegebenen Termschemas berechnen sich die in Tab. 4 angegebenen Δ - und *B*-Werte, wobei von den Lagen der Banden I und III ausgegangen wurde.

Die Δ - und *B*-Werte liegen etwas niedriger als diejenigen, welche aus den Spektren von Ni²⁺ nach Einbau in MgTiO₃ bzw. CdTiO₃ erhalten

Substanz	$\Delta [\mathrm{cm}^{-1}]$	$B [{ m cm}^{-1}]$
$Co_{0.1}Mg_{0.9}TiO_3$	7050	750
$\mathrm{Co}_{0,1}\mathrm{Cd}_{0,9}\mathrm{TiO}_3$	5650	780
0.50.0	6600	760
$CoTiO_3^*$	6600	745

Tabelle 4

* Obere Zeile auf CdTiO₃, untere Zeile auf MgTiO₃ als Weiß-Standard bezogen.

Tabelle 5

$Mg_{0,9}M_{0,1}TiO_3$		$Cd_{0,99}M_{0,01}TiO_3$	$Cd_{0,9}M_{0,1}TiO_3$
$M = \mathrm{Co}$	$M = \mathrm{Ni}^{2}$	$M = \mathrm{Ni}^{2}$	$M = \mathrm{Co}$
Δ 7050	7300	6000	$5650 \ {\rm cm^{-1}}$
B = 730	840	830	780 cm^{-1}

wurden (Tab. 5). Die kleineren Δ -Werte im Falle der Co-haltigen Phasen sind auch verständlich, da Co²⁺ einen etwas größeren Ionenradius als Ni²⁺ besitzt (0,82 bzw. 0,78 Å), so daß die CoO₆- etwas größer als die NiO₆-Oktaeder sind. Die *B*-Werte für Co²⁺ nehmen von der MgTiO₃- zur CdTiO₃-Phase geringfügig zu, während diejenigen der entsprechenden Ni²⁺-haltigen Phase sich praktisch nicht ändern (Tab. 5). Die für Co²⁺ gefundene Änderung von *B* entspricht den Ergebnissen von *Drickamer*³. Er stellte fest, daß im allgemeinen *B* mit geringer werdendem Abstand *M*—O (*M* = farbgebendes Kation) kleiner wird. Dies kann als Folge eines zunehmenden covalenten Bindungsanteiles gedeutet werden. Danach hätte die Bindung Co—O im $Co_xMg_{1-x}TiO_3$ mehr covalenten Charakter als in $Co_xCd_{1-x}TiO_3$.

Zusammenfassend können wir sagen, daß die auftretenden Farbeffekte beim isomorphen Einbau von Co^{2+} in MgTiO₃ und CdTiO₃ (*Ilmenit*-Modifikation) in der gleichen Richtung liegen, wie sie beim Einbau von Ni²⁺ in dieselben Wirtsgitter beobachtet werden. Es bestätigt sich auch hier wieder die Erfahrung, daß die Hauptabsorptionsbanden eines farbgebenden Kations nach Einbau in ein Wirtsgitter mit nur einer Art von kationischen Gitterpositionen in Richtung IR verschoben werden, wenn das Wirtsgitter durch isomorphen Einbau größerer Kationen aufgeweitet wird.

Experimenteller Teil

Darstellung der Substanzen

Eingestellte Lösungen der Nitrate von Cd, Mg und Co wurden in einem Porzellantiegel mit TiO_2 zusammengegeben und bis zur Trockene eingedampft. Anschließend wurde der Rückstand bei höherer Temperatur zersetzt. Das fein gepulverte Oxidgemisch wurde zu Pillen gepreßt und anschließend gesintert.

Substanz	Reaktions- temp., °C	Reaktions- dauer, Stdn.
CdTiO ₃	870	160
$Cd_{0.99}Co_{0.01}TiO_3$	870	160
Cd _{0.97} Co _{0.03} TiO ₃	870	160
Cd _{0.94} Co _{0.06} TiO ₃	950	120
Cd _{0.90} Co _{0.10} TiO ₃	950	120
Cd _{0.85} Co _{0.15} TiO ₃	950	120
Cd ₀ 80Co _{0.20} TiO ₃	950	120
Cd _{0.70} Co _{0.30} TiO ₃	950	120
$Cd_{0.50}Co_{0.50}TiO_3$	950	120
$Cd_{0,30}Co_{0,70}TiO_3$	950	120
$Cd_{0,20}Co_{0,80}TiO_3$	1050	90
Cd _{0.15} Co _{0.85} TiO ₃	1050	90
Cd _{0.10} Co _{0.90} TiO ₃	1050	90
Cd _{0.05} Co _{0.95} TiO ₃	1130	80
CoTiO ₃	1130	60

Tabelle 6

Im System CoTiO₃/MgTiO₃ wurden alle Substanzen bei 1130°C 60 Stdn. gesintert.

³ D. R. Stephans und M. G. Drickamer, J. Chem. Physics 34, 937 (1961).

Die Pillen wurden nach 10 bis 15 Stdn. gemörsert, wieder gepreßt und gesintert. Diesen Vorgang wiederholte man gegebenenfalls mehrfach. Danach wurden die Substanzen noch etwa 10 Stdn. in gepulvertem Zustand erhitzt und durch Herausziehen aus dem Ofen abgekühlt. Bei der Herstellung der Co-haltigen CdTiO₃-Phase mußte berücksichtigt werden, daß sich die bei niederen Temperaturen bildende *Ilmenit*-Modifikation bei höheren Temperaturen irreversibel in die *Perowskit*-Modifikation umwandelt. Je höher der Co-Gehalt, umso höher ist auch die Umwandlungstemperatur. CoTiO₃ selbst sowie die Cd-haltigen CoTiO₃-Phasen Co_xCd_{1-x}TiO₃ ($x \leq 0,2$) existieren nur in der *Ilmenit*-Modifikation. Im allgemeinen wurde bei 600° C vorgesintert und dann die Reaktion bei einer höheren, unterhalb der Umwandlungstemperatur liegenden Temperatur zu Ende geführt (Tab. 6).

TiO₂: Hergestellt durch Hydrolyse von frisch destilliertem käuflichem TiCl₄ (Zusatz von NH₃ · aq). Das ausgefallene TiO₂ · aq wurde auf dem Filter mit destill. Wasser Cl-frei gewaschen und anschließend bei 400° C zur Gewichtskonstanz getrocknet. Ermittlung des TiO₂-Gehaltes durch Bestimmung des Glühverlustes (1100° C).

Zur Herstellung der Lösungen wurden reinste Substanzen der Firma E. Merck verwendet.

Unsere Arbeiten wurden von der Deutschen Forschungsgemeinschaft, von dem Fonds der Chemie sowie von dem Ministerpräsidenten des Landes Nordrhein-Westfalen unterstützt, wofür wir auch an dieser Stelle unseren Dank aussprechen möchten.